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ABSTRACT 

 
Aperture area knowledge is a primary calibration in radiometric instruments. Corrections for edge effects, particularly 
diffraction and scatter, must also be taken into account for high accuracy measurements. The Total Irradiance Monitor 
(TIM) is a total solar irradiance radiometer on NASA’s SORCE mission launched in 2003 and on the NASA/Glory 
mission launching in 2008.  In order to measure irradiance, the TIM instrument measures the total optical power that 
passes through circular diamond-turned precision apertures. The geometric areas of the 8-mm diameter apertures are 
measured to approximately 25 parts per million (ppm) at the National Institute of Standards and Technology [1]. Due to 
scatter and diffraction, not all light that passes through the geometric area of an aperture will enter the radiometer cavity 
of the instrument, and corrections must be made for these edge effects. Diffraction effects are generally well understood 
and are calculated from the instrument geometry. Scatter, on the other hand, is dependent on the microscopic edge 
quality of each individual aperture, and so must be measured. This paper describes the measurement of aperture edge 
diffraction and scatter for the precision apertures on NASA’s Glory/TIM instrument. 
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1. INTRODUCTION 
The Total Irradiance Monitor (TIM) is an instrument on NASA’s Glory mission intended to measure the total solar 
irradiance to an absolute accuracy of 100 parts per million (ppm), or 0.01%. This instrument is nearly identical to the 
TIM currently operating on the NASA SORCE mission, launched in 2003. The TIM instrument consists of four 
electrical substitution radiometers for the measurement of spectrally-integrated optical power [2]. A precision circular 
aperture of known area is mounted in front of each of these radiometers (see Fig. 1) – this allows the optical power 
measured by the radiometers to be converted into irradiance. A small correction (430 ppm) must be made for light 
diffracted by the aperture edge that does not enter the radiometer cavity [3,4]. If the aperture edge contains defects or is 
of poor quality, then additional light may be scattered into or out of the radiometer cavity. Thus, in order to achieve the 
planned accuracy of the TIM instrument, the amount of light scattered by the aperture edge must be measured. 
 

 
Fig. 1. A drawing of the precision apertures used for the Glory/TIM instrument. The diamond-turned aperture is made from 

nickel-plated aluminum, and the center aperture diameter is approximately 8 mm. The rear angle of the knife edge 
(47°) was chosen such that reflections of light external to the instrument off that surface will not enter the radiometer 
cavities. 

Back of aperture Front of aperture 
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Diffraction and scatter from the aperture edge are difficult to distinguish experimentally. Incident light is both diffracted 
and scattered into all angles by the edge, but for small deflection angles the measured signal is dominated by the 
diffracted component. To discriminate the scattered component, the diffracted component needs to be modeled and 
subtracted from the total measured intensity. 
 

2. EXPERIMENT 
In order to study the light diffracted and scattered from the aperture edge the technique of dark-ground imaging is 
utilized [5]. In this technique a single lens is used to image the aperture edge onto a CCD camera with both the aperture 
and the CCD approximately two focal lengths away from the lens. One focal length behind the lens, where collimated 
light would be focused to a point, is the Fourier plane of the lens. In this plane the angular components of the light 
incident on the lens are focused to different spatial positions. Using the paraxial approximation, the radial position, d, in 
the Fourier plane is related to the angle of the light incident on the lens, θ (where θ=0 is normal incidence) as: 
 
 d = f tan θ( ) ≈ fθ . (1) 

If different sized beam stops are placed at the on-axis focus in the Fourier plane, different angles of light diffracted and 
scattered by the aperture edge, which are selectively blocked depending on the size of this beam stop, can be imaged. 
The measured signal as a function of angle can be compared to models of diffracted light. This allows a good test of the 
theory used for predicting the diffraction loss of the instrument, and distinguishes between the diffraction and scattered 
light signals. 
 
2.1. Experiment Setup 

The experiment setup is shown in Fig. 2. The illumination source is either a 400 or 627 nm light emitting diode (LED) 
powered by a constant current laser diode power supply. A diffuser is placed just after the LED, and reduces the angular 
structure of the LED, producing a nearly uniform illumination of the aperture. The aperture following the LED defines 
the beam collimation, selected here to match solar collimation (0.53°) at the precision aperture. 
 

 
 

Fig. 2. The basic experiment layout for the aperture edge scatter calibration. 
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Fig. 3. Image of the experiment showing (from right to left) the baffles following the precision aperture, lens, beams stops, 

and CCD camera.  The five beam stops, visible between the CCD and the lens, are each mounted on a thin piece of 
wire and fixed to a translation stage for positioning in the beam. 

Behind the precision aperture are a series of baffle plates that replicate the baffles in the actual TIM instrument (see Fig. 
3). Only the last baffle is shown in Fig. 2. This final baffle is the most critical because it defines the entrance aperture of 
the radiometer cavity, and thus the field of view of the instrument, while the others reduce far off-axis light. The 
imaging lens, a ƒ=60 mm focal length achromat, is located just behind the last baffle plate where it effectively collects 
all light that would enter the TIM radiometer cavity. It is located at a distance of approximately 2ƒ behind the aperture 
edge, and thus will create an image of the aperture edge about 2ƒ behind it. 
 
The next component in the experiment setup is the beam stop, which is located in the Fourier plane 1ƒ behind the lens. 
The bulk of the incident light consists of that passing through the aperture undeflected, and so occupies incidence angles 
from -0.26° to +0.26°. From Eqn. 1, this undeflected light occupies a circle in the Fourier plane with a radius of about 
0.27 mm. The maximum angle ray collected by the TIM radiometer, as defined by opposite edges on the precision 
aperture and the final baffle, is 6.36°. The Fourier plane can thus be illuminated out to a radius of 6.66 mm by diffracted 
and scattered light from the aperture edge. The purpose of the beam stop is to block the primary, undeflected light, 
permitting characterization of the much lower intensity scattered and diffracted light. Beam stops with varying 
diameters allow study of the angular dependence of the scattered and diffracted light.  For the results described here, 
beam stops with diameters of approximately 2, 4, 6, 8, and 10 mm are used. 
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Fig. 4. Images taken by the CCD camera at different on-axis positions with a beam stop in place. (a) The CCD is a distance 
of 2ƒ behind the lens and the image of the aperture edge is nearly in focus. A significant amount of scattered light can 
be seen from a defect in the lower right part of the aperture edge. (b) CCD is moved closer to the Fourier plane, and 
two distinct rings are clearly present.  The outer ring corresponds to light diffracted towards the optical axis, and the 
inner ring corresponds to light diffracted away from the optical axis. This is the location used for most of the 
diffraction and scatter analysis in this paper. (c)-(d) Images taken progressively closer to the Fourier plane.  In (d) the 
wire that is holding the beam stop is visible.  

The CCD camera, placed approximately 2ƒ behind the lens, allows either the full beam passing through the aperture 
(with the beam stops removed), or the larger angle scattered and diffracted light (with a beam stop present) to be 
imaged. With the CCD located at exactly 2ƒ, the image of the aperture is in focus. With a beam stop present, a ring that 
corresponds to the light diffracted or scattered from the aperture edge is imaged. For this study, the CCD camera was 
moved towards the Fourier plane by about 10 mm from the primary focus of the aperture. By working out of focus, two 
rings are imaged with a beam stop in place, one ring corresponding to the light diffracted or scattered towards the 
optical axis by the aperture edge, and the other corresponding to light diffracted or scattered away from the optical axis 
(see Fig. 4). 
 

2.2. Experiment Procedure 

A bright-ground image (an image with no beam stop present) establishes the total amount of light passing through the 
aperture, used for subsequent normalizations of the diffracted and scattered light intensities. Because of the large 
amount of light this image is acquired with a relatively short exposure time of about 50-100 ms in order to prevent the 
CCD from saturating. All images are dark corrected by subtracting a dark image where the CCD shutter is opened but 
the LED shutter remains closed. 
  
The 2 mm beam stop is then moved into place in the Fourier plane using a motorized linear translation stage, and a 
dark-ground image is acquired at the same LED exposure time as the bright-ground image. A second dark-ground 
image with the 2 mm stop using an exposure time ~50 times longer (2-3 seconds) gives significantly improved signal-
to-noise. The intensities of the short and long exposures are compared to establish a ratio, ρ, that allows intensities of 
the long exposure image to be corrected to the level of the short exposure image, and thus normalized to the bright-
ground image giving the full aperture illumination. 
 

  

a b c d 
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The other beam stops, with diameters of approximately 4,6,8, and 10 mm are then consecutively positioned in the 
Fourier plane and an image, using the long exposure time, is acquired. This procedure is performed for each aperture 
under test at 400 and 627 nm. 
 
2.3. Image Analysis 

 

      
Fig. 5. (a) A typical bright-ground image taken at the short exposure time. This image is used to establish the total light 

intensity passing through the aperture. (b) A typical dark-ground image with the 2 mm stop in place acquired with the 
long exposure time.  The inner and outer rings respectively show the light deflected away from and toward the optical 
axis. The faint, indistinct signal in the background is caused by scattering of the intense main beam off defects in the 
lens, and is subtracted off in the analysis. 

Fig. 5 shows typical bright- and dark-ground images. The bright-ground images are simply used to establish the total 
intensity, I0, passing through the aperture, computed simply as the sum of all pixels in the image. The dark-ground 
image, taken with the 2 mm stop as seen in Fig. 5 (b), shows two distinct rings due to the CCD intentionally positioned 
out of focus; these originate from light diffracted or scatter towards or away from the optical axis. 

 
The long exposure dark-ground images (with a higher signal-to-noise) undergo image analysis in order to determine the 
total amount of scattered or diffracted light.  First an azimuthal average about the center of the aperture is performed, 
the results of which are shown in Fig. 6 (a). In addition to the two bright rings, a smoothly sloping background is 
visible.  This is caused by scattering of the intense main beam off defects in the lens. To subtract the background, the 
data outside of the region containing the signal from the aperture edge, as indicated by the diamonds in Fig. 6 (a), is fit 
by a 5th order polynomial and subtracted from the data, as is seen in Fig. 6 (b). Similarly, this polynomial is used to 
subtract the background light from the dark field image itself, as is seen in Fig. 7 (b). The integral under each of the two 
peaks in Fig. 6 (b) is a measure of the total scattered and diffracted light from the edge of the aperture that enters the 
radiometer at angles sufficiently large so that the light passes by the beam stop. For the 2 mm beam stop this angle is 
approximately 1.2°. 

 

a) b) 
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Fig. 6. (a) Azimuthal average of the dark field image from Fig. 5 (b). The smoothly sloping background is caused by light  

from the main beam scattered from imperfections in the optical components of the system. (b) The same radial 
average with the background subtracted. 

 

      
Fig. 7. (a) The dark field image before background subtraction.  (b) The same image after the background has been 

subtracted. 

Next, the signal in the inner and outer rings is binned as a function of angle, as is shown in Fig. 8, to show which 
portions of the aperture circumference contribute to the scatter. Defects in the aperture edge typically correspond with 
abrupt spatial brightenings in the ring images. The primary residual function is sinusoidal and is caused by alignment 
errors of the beam stop that increase the amount of light on one side of the stop and reduce it on the other. Thus, to 
determine the total amount of light in each ring in the absence of the wire support, the data corresponding to points that 
were not obstructed by the support (as indicated by diamonds) are fit by a sine function (solid line in Fig. 8 (a) and (b)). 
The sinusoidal component is then subtracted from the data. The total fractional scattered signal in the inner or outer 
rings can then be obtained from the data shown in Fig. 8 (c) and (d) by simply summing the signal. The total fraction of 
diffracted and scattered light relative to the total intensity passing through the aperture is then simply obtained by 
summing the signal in Fig. 8 (c) or (d) and dividing by the total intensity, I0, and the ratio between the long and short 
exposures, ρ. 

 
  

 

a) b) 

a) b) 
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Fig. 8. (a) Integrated signal as a function of azimuthal angle in the outer ring of the image from Fig.6 (b).  (b) Integrated 
signal as a function of azimuthal angle in the inner ring of the image from Fig.6 (b).  (c) The signal from (a) with the 
residual sinusoidal variation removed. The signal over the wire support has been extrapolated.  (d) The same technique 
performed for the data in (b).  

 

3. RESULTS 
For each beam stop the amount of diffracted and scattered light that appeared in the dark-field image was measured 
following the previously described experimental procedure. For the 2 mm stop, which blocked light at angles greater 
than 1.2°, two distinct diffraction rings were imaged, as was described in Section 2.2. The inner of the two rings 
originated from light diffracted or scattered away from the optical axis (see Fig. 4). This light was blocked for angles 
greater than 1.75° by the final baffle. All other beam stops, which blocked light at angles greater than 2°, blocked all of 
this light, and so for those beam stops only one diffraction ring was imaged.  
 
In Fig. 9 the total measured diffracted and scattered light is plotted for one of the Glory/TIM flight apertures. 
Additionally, the predicted amount of diffracted light, using Eqn. 9 from Appendix A, is plotted. The agreement 
between the measured and predicted values indicates that the majority of the measured light is due to diffraction and 
that the aperture edges create very little scattered light. 
 

a) b) 

c) d) 
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Fig. 9. The measured amount of diffracted and scattered light as a function of ′ φ Min  for one of the Glory/TIM flight 

apertures (aperture 1). The solid (dashed) line is the predicted amount of diffracted light for ′ φ Max =6.60° 
( ′ φ Max =1.75°) and thus corresponds to the outer (inner) ring in Fig. 7 (b). The agreement between the measured total 
diffracted and scattered light and the calculated contribution from diffraction alone indicates that very little light is 
scattered by the edges on the TIM apertures. The diffraction theory from Appendix A may also be used to calculate 
the amount of light diffracted by the aperture edge that will not enter the radiometer cavity in the TIM/Glory 
instrument. Performing the calculation at 947 nm, the energy-weighted average wavelength of the solar spectrum, 
generates a value for the diffraction loss of 453 ppm. 

Table 1 summarizes the error budget for the measurement. The geometry uncertainty originates from the uncertainty in 
the exact diameter and the positioning of the beam stops, and thus propagates to an uncertainty in ′ φ Min  and ′ φ Max .  The 
uncertainty in ppm is then estimated through the slope of the calculated diffraction curve in Fig. 9. The LED uncertainty 
is based on the measured stability of the LED during a timescale on the order of that needed to take the series of bright-
ground and dark-ground images. The ratio stability uncertainty is obtained from the variance in the ratio ρ between the 
long and short exposures. Because the long and short exposure times remain constant, variations in this ratio could, for 
instance, originate from timing fluctuations of the LED shutter. The uncertainty limit for the CCD linearity was 
determined by taking a series of bright-ground images with varying exposure times; intensity deviations from linearity 
with exposure time are used as the limit for the CCD non-linearity. Finally, the background subtraction uncertainty 
originates from the uncertainty in the 5th order polynomial fit. The total uncertainty differs for each beam stop and is in 
the range of 2-15 ppm, giving relative measurement uncertainties of ~6-15%. 
 

Table 1. The error budget for the measurement of one of the Glory/TIM flight apertures (aperture 1). 

Uncertainty (ppm) Beam 
Stop 
(mm) 

Measured 
Signal 
(ppm) 

 
Geometry 

LED 
Stability 

Ratio 
Stability 

CCD 
Linearity 

Background 
Subtraction 

 
Total 

10.16 11.79 1.69 0.06 0.14 0.24 0.24 1.73 
8.10 22.18 2.29 0.11 0.27 0.44 0.44 2.39 
6.10 52.75 3.12 0.26 0.63 1.06 1.06 3.53 
4.01 88.18 4.96 0.44 1.06 1.76 1.76 5.67 
2.11 221.53 11.88 1.11 2.66 4.43 4.43 13.74 
2.11 76.06 5.63 0.38 0.91 1.52 1.52 6.11 

 

From the plots in Fig. 9 it is clear that there is good agreement between the measurement and the predicted diffraction 
signal. In Table 2, the calculated integrated χ2 probability values are shown using the entire dataset of 12 points (6 sets 
of ′ φ Min  and ′ φ Max  values at two wavelengths) for the four Glory/TIM flight apertures.  
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Table 2. The final results of the aperture edge scatter measurement for the four Glory/TIM flight apertures. All four flight 
apertures are statistically consistent with no aperture edge scatter.  

χ2 
Probability 

Estimated 
Scatter 

Est. Scatter 
Uncertainty 

Aperture 
Area [1] 

Area 
Uncert. [1] 

 
Aperture 
Number % ppm ppm mm2 ppm 

1 45.6 15.1 16.8 50.588615 21.2 
2 20.0 1.4 16.8 50.447022 23.6 
4 11.7 8.8 16.8 50.321236 21.3 
6 27.6 4.1 16.8 50.182467 26.7 

 

From Table 2 we see that the χ2 probability for the four flight apertures falls within a reasonable range, indicating that 
the measured signal is statistically consistent with the predicted signal from diffraction alone. To further elucidate the 
scatter light contribution, we subtracted the contribution due to diffraction from the measurement. Then using an 
extremely simplified model of scattered light, where the scattered light is assumed to be uniform over the angles and 
wavelengths of the measurement, we fit the residual data and calculate a contribution due to scattered light. The 
scattered light estimated in this manner is reported in Table 2. Again, we see that the estimated scattered light is very 
small, and within statistical uncertainty of zero. 

4. CONCLUSION 
We have characterized the diffracted and scattered light intensity into the TIM radiometer cavities and compared to 
diffraction theory. We estimate both the amount of incident light lost due to diffraction and the amount of light scattered 
into the radiometer cavities for each of the Glory/TIM flight apertures. We find very good agreement between theory-
based diffraction estimates and measurements of diffracted plus scattered light, indicating that the primary source of this 
indirect light is diffraction. We find the edges on the Glory/TIM apertures contribute an insignificant amount of scatter 
because of their edge quality.  

Proc. of SPIE Vol. 6296  62961I-9

Downloaded from SPIE Digital Library on 14 Feb 2011 to 128.59.62.83. Terms of Use:  http://spiedl.org/terms



 

 

 

APPENDIX A. DIFFRACTION CALCULATION 

 
Fig. A-1. The geometry for the calculation of diffraction from a perfectly conducting half-plane. 

The dominant contribution to the signal in Fig. 6 (b) is from diffraction. In order to extract the contribution from 
scattered light, the diffracted light contribution must be calculated. The starting point for this calculation is the exact 
solution to the diffraction of unpolarized light due to a perfectly conducting half-plane [6] (see Fig. A-1): 
 

 I(r,θ) =
I0

2
1
2

− C z( )
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

2

+
I0

2
1
2

− S z( )
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

2

, (2) 

where C  & S  are the Fresnel integrals,  
 

 z = 2 2r
λ

sin φ
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , (3) 

I0  is the incident intensity, λ  is the wavelength of the incident light, r  is the distance from the half-plane edge to the 
point of interest, and φ  is the angle this light is deflected. In the far-field approximation for z >>1: 

 C z( ) ≈
1
2

+
1
πz

sin π
2

z2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , (4) 

 S z( ) ≈
1
2

−
1
πz

cos π
2

z2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ . (5) 

Eqn. (2) then becomes 

 I(r,θ) = I0
1

2π 2z2 = I0
λ

16π 2rsin2 φ 2( )
. (6) 
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Fig. A-2. The calculated diffracted intensity as a function of angle from a half-plane.  The solid line is the exact solution 

from Eqn. 2. The crosses indicate the approximate solution from Eqn. 6.  The approximate solution agrees well with 
the exact solution for φ > 0.  The approximate solution represents only the light diffracted from the edge, sometimes 
called a boundary wave [7], which is symmetric about φ = 0.  

Fig. A-2 shows the exact diffracted intensity and our approximation.  Immediately obvious is that the approximation is 
symmetric about φ = 0; this is because of the assumption z >>1. The diffracted wave is in fact symmetric, so the 
approximation in Eqn. 6 properly describes the diffracted light for angles other than φ ≈ 0. 

In order to apply this result to the test situation we would like a form that describes the light diffracted from a circular 
aperture between two angles.   To generate this form we simply multiply Eqn. 6 by the aperture circumference and 
integrate over the ranges of angles: 

 
I φMin,φMax( )

ITotal

=
λ

4π 2R
1

tan φMin 2( )
−

1
tan φMax 2( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . (7) 

This assumes that the radius of curvature of the aperture is much greater than the wavelength of light used.  

Next, we consider that the light source is not an infinite distance from the aperture, thus the geometry in Fig. 10 is 
slightly too simplistic to correctly describe the experiment layout.  The most important correction is to allow for non-
normal incident light. We can rewrite Eqn. 7 to include a deviation for normal incidence by δ , 

 
I φMin,φMax( )

ITotal

=
λ

4π 2R
1

tan φMin −δ( ) 2( )
−

1
tan φMax −δ( ) 2( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
. (8) 

A second smaller effect is that the light source has a finite extent.  For a circular light source this can be included by 
integrating Eqn. 8 over the angular extent of the light: 

 
IDiffraction

ITotal

=

λ
4π 2R

1
tan ′ φ Min −δ( ) 2( )

−
1

tan ′ φ Max −δ( ) 2( )
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1−
δ2

δWidth
2 dδ

−δWidth

δ Width∫

1−
δ 2

δWidth
2 dδ

−δ Width

δWidth∫
, (9) 

 ′ φ Min = φMin − δCenter ,  ′ φ Max = φMax − δCenter , (10) 

where δCenter  obtained from the geometry of Fig. A-3 and δWidth  is the half-width of the light source (0.26° for this 
experiment to simulate incident sunlight). 
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Fig. A-3. The geometry with a finite source size and distance. 

 
 

REFERENCES 
 
1. J. Fowler and M. Litorja, “Geometric area measurements of circular apertures for radiometry at NIST,” Metrologia, 

40, S9-S12 (2003). 
2. G. Kopp and G. Lawrence, "The Total Irradiance Monitor (TIM): Instrument Design," Solar Physics, 230, 91-109 

(2005). 
3. G. Kopp, K. Heuerman, and G. Lawrence, “The Total Irradiance Monitor (TIM): Instrument Calibration," Solar 

Physics, 230, 111-127 (2005). 
4. E. L. Shirley, "Revised formulas for diffraction effects with point and extended sources," Applied Optics. 37(28), 

6581-6590 (1998). 
5. J. W. Goodman, Introduction to Fourier Optics, pg. 222, Roberts & Company, (2005). 
6. M. Born and E. Wolf, Principles of Optics, pg. 656, Cambridge University Press, (1999). 
7. S. Ganci, "Boundary diffraction wave theory for rectilinear apertures," Eur. J. Phys. 18, 229-236 (1997). 
 

Proc. of SPIE Vol. 6296  62961I-12

Downloaded from SPIE Digital Library on 14 Feb 2011 to 128.59.62.83. Terms of Use:  http://spiedl.org/terms


